If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+15x+115=0
a = -16; b = 15; c = +115;
Δ = b2-4ac
Δ = 152-4·(-16)·115
Δ = 7585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{7585}}{2*-16}=\frac{-15-\sqrt{7585}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{7585}}{2*-16}=\frac{-15+\sqrt{7585}}{-32} $
| 1/4x-4=4 | | (5x)^4=5^24 | | 4(1-2x=3(2-x) | | 100x-x=200+5 | | x^2+9=70 | | 8x-5=5x+24 | | x+(3x-12)=88 | | 12-7=x/3 | | 22x-25x=7-10 | | 1-2a=a+40 | | -48+18=-6x+12x | | 5(x-3)-2x=-21 | | (6x)+6(x+3)=48 | | 8m-4=-4-7m | | 4x+6=2x+44 | | 6-6=11x+9x | | -43y=-89 | | (6x)6(x+3)=48 | | 3(x+4)-9=10 | | 21=5x+3+5 | | 4x-18=6x+10 | | 2(3x+4)+3(2x+5)=9 | | 27n=-13 | | 4z=-64 | | -123=-3(1-5m) | | 6x+6x=30 | | -2x+3=1/5x+11 | | 8x+38=3x-21 | | -5(1-6r)=-125 | | -120=8(2n-1) | | 6x-5=4×-4 | | 7(7k+5)=378 |